EVOLUTION - THE TRANSITIONAL FOSSILS
  • Home
  • Introduction
  • Evolution of life
    • Overview
    • Origin of the Eukaryotes
    • Animals >
      • Vertebrate stem group >
        • Cyclostome stem group
        • Hagfish stem group
        • Lamprey stem group
        • Gnathostome stem group
        • Chondrichthyan stem group
        • Chimaera stem group
        • Shark stem group
        • Osteichthyan stem group
        • Actinopterygian stem group
        • Bichir and reedfish stem group
        • Sturgeon and paddlefish stem group
        • Neopterygian stem group
        • Teleostean stem group
        • Holostean stem group
        • Sarcopterygian stem group
        • Coelacanth stem group
        • Lungfish stem group
        • Tetrapod stem group >
          • Mammalian stem group
          • Monotreme stem group
          • Therian stem group
          • Marsupial stem group
          • Eutherian stem group
          • Bat stem group
          • Pangolin stem group
          • Carnivoran stem group
          • Odd-toed ungulate stem group
          • Rodent stem group
          • Lagomorph stem group
          • Paenungulate stem group
          • Hyrax stem group
          • Elephant stem group
          • Sea cow stem group
          • Aardvark stem group
          • Elephant shrew stem group
          • Afrosoricid stem group
    • Land plants >
      • Evolution of Bryophytes
      • Vascular plant stem group >
        • Lycophyte stem group
        • Isoetales-Selaginellales stem group
        • Quillwort stem group
        • Euphyllophyte stem group
        • Horsetail stem group
        • Marattialean fern stem group
        • Royal fern stem group
        • Seed plant stem group
    • Glossary
  • Navigation
  • Data
  • About the author
  • Contact

vascular plant stem group

Previous page
This page covers the stem group of the vascular plants (Phylum Tracheophyta, Superphylum Embryophyta). A summary of the phylogeny of this clade is shown below:
Picture
Figure 1. Summarized phylogenetic tree of the vascular plants
​For ease of reference, the stem lines shown in the above tree are numbered as shown below:
Picture
​Figure 2. Branch numbering scheme
​The pages corresponding to the branches shown can be found by clicking the links in the following table:
Branch number
Branch name
Page link
2
Stem-Tracheophyta
This page
2-1
Stem-Lycophyta
​Lycophyte stem group
2-2
Stem-Lycopodiales
​No stem-group fossils known
2-3
Stem-(Isoetales+Selaginellales)
​Isoetales-Selaginellales stem group
2-4
Stem-Selaginellales
​No stem-group fossils known
2-5
Stem-Isoetales
​Quillwort stem group
2-6
Stem-Euphyllophyta
​Euphyllophyte stem group
2-7
Stem-Monilophyta
​No consensus on stem group
2-8
Stem-(Ophioglossidae+Equisetales)
No stem-group fossils known
2-9
Stem-Equisetales
​Horsetail stem group
2-10
Stem-Ophioglossidae
No stem-group fossils known
2-11
Stem-Psilotales
No known fossil record
2-12
Stem-Ophioglossales
No  published stem-group phylogeny​
2-13
Stem-(Polypodiidae+Marattiales)
​No stem-group fossils known
2-14
Stem-Marattiales
​Marattialean fern stem group
2-15
Stem-Polypodiidae
No  published stem-group phylogeny
2-16
Stem-Osmundales
​Royal fern stem group
2-17
Stem-(Hymenophyllales to  Polypodiales)
​No stem-group fossils known
2-18
Stem-(Gleicheniales+Hymenophyllales)
​No stem-group fossils known
2-19
Stem-Hymenophyllales
​No  published stem-group phylogeny
2-20
Stem-Gleicheniales
​No stem-group fossils known
2-21
Stem-(Schizaeales to   Polypodiales)
​No stem-group fossils known
2-22
Stem-Schizaeales
​No  published stem-group phylogeny
2-23
Stem-(Salviniales to  ​ Polypodiales)
​No stem-group fossils known
2-24
Stem-(Salviniales+Cyatheales)
​No stem-group fossils known
2-25
Stem-Salviniales
​No  published stem-group phylogeny
2-26
Stem-​Cyatheales
​No stem-group fossils known
2-27
Stem-​Polypodiales
​No  published stem-group phylogeny
2-28
Stem-Spermatophyta
​Seed plant stem group
This page thus covers Branch 2, along which are found the stem-group tracheophytes.

The primary synapomorphy of the tracheophyte crown group is the presence of vascular tissues (Morris et al, 2018). Furthermore, the walls of the water-conducting cells in the xylem have a thick, lignified, decay-resistant layer (De Queiroz et al, 2020). These synapomorphies represent evolutionary novelties that developed along the tracheophyte stem line after the split from the bryophyte clade.
​ 
The phylogeny of the stem-Tracheophyta is still contentious. Various proposals have been made in recent years (e.g. Cascales‐Miñana and Gerrienne, 2017; Cascales-Miñana et al, 2019; Niklas and Crepet, 2020). The version of Niklas and Crepet (2020) is generally representative of the consensus developed over the last few decades (following Kenrick and Crane, 1997); it is summarized in the following time tree:
Picture
​Figure 3. Time tree of the stem-Tracheophyta
​The oldest known member of the tracheophyte total group is Cooksonia barrandei (Libertín et al, 2018a), found in the Motol Formation of mid-Silurian (Wenlock) age at the Špičatý vrch - Barrandovy jámy fossil site in the Czech Republic (Libertín et al, 2018). This is assumed here to be a stem tracheophyte based on its belonging to the same genus as the generally recognized stem-group tracheophyte Cooksonia pertoni (Edwards and Kenrick, 2015). Several species of the genus Cooksonia are illustrated below, together with other members of the stem group included in the above time tree (for a larger view, click on image):
Names in   red indicate   that the fossil is younger  than the oldest known crown-group fossil.
Figure 4. Images of stem-Tracheophyta
The above images are numbered in order from the most basal to those closest to the crown group, but few obvious changes can be seen apart from a tendency to a greater degree of branching and the development of rhizomes later in the series. All of these plants were quite small, growing to a height of generally less than 20 cm.

The available fossil data indicate that the tracheophyte stem group developed during the Wenlock and Ludlow epochs of the Silurian, representing a stem-to-crown transition of only about 8 million years (see Figure 1). Most of the stem-group fossils shown above were found in NE Scotland in the Rhynie Chert lagerstätte of Early Devonian (Pragian – Emsian) age (Garwood et al, 2020; Kerp, 2018). These fossils are younger than the oldest known member of the crown tracheophyte (the stem lycophyte Zosterophyllum sp., of Ludlow age).
Next page

References

Cascales‐Miñana, B., & Gerrienne, P. (2017). Teruelia diezii gen. et sp. nov.: an early polysporangiophyte from the Lower Devonian of the Iberian Peninsula. Palaeontology, 60(2), 199-212.

Cascales-Miñana, B., Steemans, P., Servais, T., Lepot, K., & Gerrienne, P. (2019). An alternative model for the earliest evolution of vascular plants. Lethaia, 52(4), 445-453.

De Queiroz, K., Cantino, P. D., & Gauthier, J. A. (Eds.). (2020). Phylonyms: a Companion to the PhyloCode. CRC Press.

Edwards, D., & Kenrick, P. (2015). The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937)‘On the plant-remains from the Downtonian of England and Wales'. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1666), 20140343.

Garwood, R. J., Oliver, H., & Spencer, A. R. (2020). An introduction to the Rhynie chert. Geological Magazine, 157(1), 47-64.

Kenrick, P., & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389(6646), 33-39.

Kerp, H. (2018). Organs and tissues of Rhynie chert plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1739), 20160495.

Libertín, M., Kvaček, J., Bek, J., Žárský, V., & Štorch, P. (2018). Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nature plants, 4(5), 269-271.

Morris, J. L., Puttick, M. N., Clark, J. W., Edwards, D., Kenrick, P., Pressel, S., ... & Donoghue, P. C. (2018). The timescale of early land plant evolution. Proceedings of the National Academy of Sciences, 115(10), E2274-E2283.

Niklas, K. J., & Crepet, W. L. (2020). Morphological (and not anatomical or reproductive) features define early vascular plant phylogenetic relationships. American Journal of Botany, 107(3), 477-488.

Image credits – stem-Tracheophtya
  • Header (Woody Dicot Stem: Primary Phloem and Xylem in One Year Tilia): Berkshire Community College  Bioscience Image Library, CC0, via Wikimedia Commons
  • Figure 4 (Aglaophyton major): Open Access article Hetherington, A. J., & Dolan, L. (2018). Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1739), 20170042.
  • Figure 4    (Cooksonia barrandei): Open Access article Pšenička, J., Bek, J., Frýda, J., Žárský, V., Uhlířová, M., & Štorch, P. (2021). Dynamics of Silurian plants as response to climate changes. Life, 11(9), 906.
  • Figure 4    (Cooksonia sp., fossil): Open Access article Pšenička, J., Bek, J., Frýda, J., Žárský, V., Uhlířová, M., & Štorch, P. (2021). Dynamics of Silurian plants as response to climate changes. Life, 11(9), 906.
  • Figure 4    (Cooksonia sp. life restoration): MUSE, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
  • Figure 4    (Cooksonia cf. hemisphaerica): Open Access article Pšenička, J., Bek, J., Frýda, J., Žárský, V., Uhlířová, M., & Štorch, P. (2021). Dynamics of Silurian plants as response to climate changes. Life, 11(9), 906.
  • Figure 4    (Nothia aphylla): Open Access article Hetherington, A. J., & Dolan, L. (2018). Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1739), 20170042.
  • Figure 4    (Rhynia gwynne-vaughani, fossil): Peter Coxhead, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
  • Figure 4    (Rhynia gwynne-vaughani, fossil and reconstructions): Open Access article Hetherington, A. J., & Dolan, L. (2018). Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1739), 20170042.
  • Figure 4    (Rhynia gwynne-vaughani, life restoration): MUSE, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
  • Figure 4    (Horneophyton lignieri, fossil with several corms or tubers): Peter Coxhead, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
  • Figure 4    (Horneophyton lignieri, fossil with magnified view of a single corm or tuber): Peter Coxhead, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
  • Figure 4    (Horneophyton lignieri, fossil and reconstructions): Open Access article Hetherington, A. J., & Dolan, L. (2018). Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1739), 20170042.
  • Home
  • Introduction
  • Evolution of life
    • Overview
    • Origin of the Eukaryotes
    • Animals >
      • Vertebrate stem group >
        • Cyclostome stem group
        • Hagfish stem group
        • Lamprey stem group
        • Gnathostome stem group
        • Chondrichthyan stem group
        • Chimaera stem group
        • Shark stem group
        • Osteichthyan stem group
        • Actinopterygian stem group
        • Bichir and reedfish stem group
        • Sturgeon and paddlefish stem group
        • Neopterygian stem group
        • Teleostean stem group
        • Holostean stem group
        • Sarcopterygian stem group
        • Coelacanth stem group
        • Lungfish stem group
        • Tetrapod stem group >
          • Mammalian stem group
          • Monotreme stem group
          • Therian stem group
          • Marsupial stem group
          • Eutherian stem group
          • Bat stem group
          • Pangolin stem group
          • Carnivoran stem group
          • Odd-toed ungulate stem group
          • Rodent stem group
          • Lagomorph stem group
          • Paenungulate stem group
          • Hyrax stem group
          • Elephant stem group
          • Sea cow stem group
          • Aardvark stem group
          • Elephant shrew stem group
          • Afrosoricid stem group
    • Land plants >
      • Evolution of Bryophytes
      • Vascular plant stem group >
        • Lycophyte stem group
        • Isoetales-Selaginellales stem group
        • Quillwort stem group
        • Euphyllophyte stem group
        • Horsetail stem group
        • Marattialean fern stem group
        • Royal fern stem group
        • Seed plant stem group
    • Glossary
  • Navigation
  • Data
  • About the author
  • Contact